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Abstract

Sequence models are a critical component of
modern NLP systems, but their predictions are
difficult to explain. We consider model ex-
planations though rationales, subsets of con-
text that can explain individual model predic-
tions. We find sequential rationales by solving
a combinatorial optimization: the best ratio-
nale is the smallest subset of input tokens that
would predict the same output as the full se-
quence. Enumerating all subsets is intractable,
so we propose an efficient greedy algorithm
to approximate this objective. The algorithm,
which is called greedy rationalization, applies
to any model. For this approach to be effec-
tive, the model should form compatible condi-
tional distributions when making predictions
on incomplete subsets of the context. This
condition can be enforced with a short fine-
tuning step. We study greedy rationalization
on language modeling and machine translation.
Compared to existing baselines, greedy ratio-
nalization is best at optimizing the sequential
objective and provides the most faithful ratio-
nales. On a new dataset of annotated sequen-
tial rationales, greedy rationales are most simi-
lar to human rationales.

1 Introduction

Sequence models are a critical component of tasks
ranging from language modeling (Radford et al.,
2019) to machine translation (Brown et al., 1993;
Vaswani et al., 2017) to summarization (Rush et al.,
2015). These tasks are dominated by complex neu-
ral networks. While these models produce accurate
predictions, their decision making processes are
hard to explain. Interpreting a model’s prediction
is important in a variety of settings: a researcher
needs to understand a model to debug it; a doctor
using a diagnostic model requires justifications to
validate a decision; a company deploying a lan-
guage model relies on model explanations to detect
biases appropriated from training data.
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Figure 1. Rationales for sequential prediction on GPT-
2. Each row is a predicted word. The darkened cells
correspond to the context words found by greedy ra-
tionalization. To predict “constitutionality”, the model
only needs “The”, “Court”, “challenge”, and “the”.

Interpretation takes many flavors (Lipton, 2018).
We focus on rationales, i.e. identifying the most
important subset of input tokens that leads to the
model’s prediction. For example, consider the sen-
tence: “The Supreme Court on Tuesday rejected
a challenge to the constitutionality of the death
penalty.” Suppose we would like to explain the de-
cision of the model to generate “constitutionality.”
While the model mathematically conditions on all
the previous words, only some are critical to its pre-
dictions. In this case, the rationale produced by our
algorithm includes “the”, “challenge”, and notably
“Court”, but not phrases that add no information
like “on Tuesday” (Figure 1).

Various rationale methods have been proposed
for sequence classification, where each sequence
has a single rationale (Lei et al., 2016; Chen et al.,
2018; Jain et al., 2020). However, these methods
cannot scale to sequence models, where each token
in a sequence requires a different rationale.



This work frames the problem of finding se-
quence rationales as a combinatorial optimization:
given a model, the best rationale is the smallest
subset of input tokens that would predict the same
token as the full sequence. Finding the global op-
timum in this setting is intractable, so we propose
greedy rationalization, a greedy algorithm that it-
eratively builds longer rationales. This approach is
efficient for many NLP models such as transform-
ers. Moreover, it does not require access to the
inner workings of a model, such as gradients.

Underlying this approach is an assumption that
the model forms sensible predictions for incom-
plete subsets of the input. Although we can pass
in incomplete subsets to neural models, there is no
guarantee that their predictions on these subsets
will be compatible with their predictions on full
contexts (Arnold and Press, 1989). We show that
compatibility can be learned by conditioning on
randomly sampled context subsets while training
a model. For large pretrained models like GPT-2
(Radford et al., 2019), fine-tuning is sufficient.

In an empirical study, we compare greedy ratio-
nalization to various gradient- and attention-based
explanation methods on language modeling and
machine translation. Greedy rationalization best
optimizes the objective, and its rationales are most
faithful to the inner workings of the model. We
additionally create a new dataset of annotated ratio-
nales based on the Lambada corpus (Paperno et al.,
2016). We find that greedy rationales are most sim-
ilar to human annotations, both on our dataset and
on a labeled dataset of translation alignments.

2 Sequential Rationales

Consider a sequence of tokens, y;.7, generated by
some unknown process yi.7 ~ F. The goal of
sequence modeling is to learn a probabilistic model
pp that approximates F' from samples. Maximum-
likelihood estimation is an effective way to train
these models, where 6 is fit according to

arg ;nax Ey,.r~r[log pe(y1.7)]- (D

Sequence models are typically factored into condi-
tional distributions:

T
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Here, fy is the specific model parameterizing py,
such as a transformer (Vaswani et al., 2017), and is

trained to take inputs y;. Going forward, we drop
the dependence on 6 in the notation.

Word-level explanations are a natural way to
interpret a sequence model: which words were in-
strumental for predicting a particular word? Would
the same word have been predicted if some of the
words had been missing?

Explanations may be straightforward for simpler
models; for example, a bigram Markov model uses
only the previously generated word to form predic-
tions. However, the most effective sequence mod-
els have been based on neural networks, whose pre-
dictions are challenging to interpret (Lipton, 2018).

Motivated by this goal, we consider a sequence
y1.7 generated by a sequence model p. At each
position ¢, the model takes the inputs in the context
1<+ and uses them to predict ;. We are interested
in forming rationales: subsets of the contexts that
can explain the model’s prediction of y;.!

What are the properties of a good rationale? Any
of the contextual words y.; can contribute to ;.
However, if a model makes the same prediction
with only a subset of the context, that subset con-
tains explanatory power on its own. A rationale
is sufficient if the model would produce the same
y¢ having seen only the rationale (DeYoung et al.,
2020). While rationales consisting of the full con-
text would always be sufficient, they would be inef-
fective for explaining longer sequences. Intuitively,
the smaller the rationale, the easier it is to interpret,
so we also prioritize brevity.

We combine these desiderata and frame finding
rationales as a combinatorial optimization: the best
rationale of a word 9 is the smallest subset of in-
puts that would lead to the same prediction. Each
candidate rationale .S is an index set, and yg de-
notes the subset of tokens indexed by 5.2 Denote
by S = 2~ the set of all possible context subsets.
An optimal rationale is given by

argmin |S| s.t. argmaxp(yilys) = . (3)
Ses A

The constraint guarantees sufficiency, and the ob-
jective targets brevity. Although the objective may
have multiple solutions, we only require one.
Optimizing Eq. 3 is hindered by a pair of com-
putational challenges. The first challenge is that

'Our paradigm and method extend easily to conditional
sequence models, such as those used for machine translation.
For full details, refer to Appendix A.

2A sequence of tokens can be represented as a set of tuples:
“The dog walks” becomes {(1 : The), (2 : dog), (3 : walks)}.



solving this combinatorial objective is intractable;
framed as a decision problem, it is NP-hard. We dis-
cuss this challenge in Section 3. The second chal-
lenge is that evaluating distributions conditioned
on incomplete context subsets p(y;|ys) involves
an intractable marginalization over missing tokens.
For now we assume that f(y;|ys) ~ p(y}|ys); we
discuss how to enforce this condition in Section 4.

3 Greedy Rationalization

We propose a simple greedy algorithm, greedy ra-
tionalization, to approximate the solution to Eq. 3.
The algorithm starts with an empty rationale. At
each step, it considers adding each possible token,
and it selects the one that most increases the prob-
ability of y;. This process is repeated until the
rationale is sufficient for predicting ;.> Figure 2
provides an overview.

Here is the algorithm. Begin with a rationale
S©) = . Denoting by [t — 1] = {1,...,t — 1},
the first rationale set is

SW = arg max p(ye|yx)- “4)
ket—1]
At each step, we iteratively add a single word to
the rationale, choosing the one that maximizes the
probability of the word y;:

§n+1) — g(n) argmax p(yt|ysmyg). (S)
ke[t—1]\s(

We  continue iterating Eq. 5  until
arg max,, p(Yilysemy) = yr. The procedure
will always converge, since in the worst case,
S(=1) contains the full context.

This procedure is simple to implement, and it is
black-box: it does not require access to the inner
workings of a model, like gradients or attention.

While greedy rationalization can be applied to
any model, greedy rationalization is particularly
effective for set-based models such as transform-
ers. If we assume the rationale size m = |S] is
significantly shorter than the size of the context ¢,
greedy rationalization requires no extra asymptotic
complexity beyond the cost of a single evaluation.

For transformers, the complexity of each evalu-
ation f(y;|y<¢) is quadratic in the input set O(#?).
Each step of greedy rationalization requires evalu-
ating f(y¢|ys), but yg can be significantly smaller

3The greedy approach is motivated by approximations to
the set cover problem (Chvatal, 1979). Each set is a single
context token, and a rationale is “covered” if it results in
generating the true token.

than y;. A rationale of size m will require m
steps to terminate, resulting in a total complexity of
O(m?t). As long as m = O(t'/?), greedy rational-
ization can be performed with the same asymptotic
complexity as evaluating a transformer on the full
input, O(¢?). In Appendix C, we empirically verify
the efficiency of greedy rationalization.

4 Model Compatibility

Greedy rationalization requires computing condi-
tional distributions p(y:|ys) for arbitrary subsets
S. Using an autoregressive model, this calcula-
tion requires marginalizing over unseen positions.
For example, rationalizing a sequence y;.3 requires
evaluating the candidate rationale p(ys|y; ), which
marginalizes over the model’s predictions:

plyslyr) =) Flyslyr, vz = k) f (g2 = Ely).
B

Given the capacity of modern neural networks,
it is tempting to pass in incomplete subsets yg to
f and evaluate this instead as f(y¢|ys) ~ p(y¢|ys).
However, since f is trained only on complete fea-
ture subsets y¢, incomplete feature subsets yg are
out-of-distribution (Hooker et al., 2019). Evaluat-
ing f(y3|y1) may be far from the true conditional
p(ysly1). In Figure 4, we show that indeed lan-
guage models like GPT-2 produce poor predictions
on incomplete subsets.

4.1 Fine-tuning for Compatibility

Ideally f(yelys) approximates p(y|ys), a property
known as compatibility (Arnold and Press, 1989).

Since training with Eq. 1 only evaluates f on com-
plete contexts y¢, its behavior on incomplete con-
texts yg is unspecified. Instead, compatibility can
be obtained by training to maximize

Ey, rnFEs unif(s) [EtT:l log f (yt!ys<t)] , (6)

where S ~ Unif(S) indicates sampling word sub-
sets uniformly at random from the power set of all
possible word subsets, and S; denotes the indices
in S that are less than t. We approximate Eq. 6 with
word dropout.4 Jethani et al. (2021) show that the
optimum of Eq. 6 is the distribution whose condi-
tional distributions are all equal to the ground-truth
conditionals.

*In practice, we combine this objective with standard MLE
training to learn compatible distributions while maintaining
the performance of the original model. We also skew the word
dropout distribution towards sparser rationales since we expect
shorter rationales to be more common; see Appendix D.
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“The”, “dogs”
“loud”, “dogs”
“and”, “dogs”

“hungry”, “dogs”
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Figure 2. One step of greedy rationalization. In (a), the rationale so far is a single word, “dogs.” In (b), each
candidate token is considered and “loud” results in the best probability for “bark.” In (c), the token “loud” is added
to the rationale. This process repeats until the most likely word is the model prediction.
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Figure 3. Training with word dropout (right) results in
compatible predictions for the majority-class synthetic
language. The optimal compatibility is the dashed line.

The intuition for Eq. 6 is straightforward: if
the model sees incomplete contexts while training,
it can approximate arbitrary incomplete distribu-
tions. Since f(y:|ys) approximates F'(y;|ys) and
f(yt|y<t) approximates F'(y:|y<), all the condi-
tional distributions are compatible.

4.2 Compatibility Experiments

To demonstrate the impact of training with the com-
patibility objective in Eq. 6, we consider a synthetic
majority-class language over binary strings of 19
tokens. The first 17 are sampled uniformly from
{0,1}, and the 18th token is always ‘=". The 19th
token is 0 if there are more 0’s than 1’s in the first
17 tokens, and 1 otherwise.

We train two models: one using the standard
objective in Eq. 1, the other using word dropout
to optimize Eq. 6. Although both models have
the same heldout perplexity on the full context,
training with Eq. 6 is required to form compatible
predictions on incomplete subsets. In Figure 3, we
provide different models f with random subsets S
and calculate the model’s probability that the last
token is 1. A model that has only seen a few tokens
should be less confident about the prediction of
the final majority class, yet models trained without
word dropout ignore this uncertainty.

Models do not need to be trained from scratch
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Figure 4. Fine-tuning GPT-2 for compatibility re-
moves pathological repeating on incomplete contexts.
For a position ¢, the vertical axis gives f(yi+1 =
“the”|y; = “the”).

with Eq. 6. A model can be pre-trained with Eq. 1,
after which it can be fine-tuned for compatibility.
As an example, when GPT-2 is not trained with
word dropout, it makes insensible predictions for
out-of-distribution sequences. For a sequence that
contains only the token “the,” GPT-2 is trained to
give reasonable predictions for p(yz2|y; = “the”).
But when it has only seen the token “the” some-
where besides the first position of the sequence, the
top prediction for the word after “the” is also “the”.
Of course, following “the” with “the” is not gram-
matical. Fine-tuning for compatibility alleviates
this problem (Figure 4).

Finally, we find that that fine-tuning for com-
patibility does not hurt the heldout performance
of the complete conditional distribution of each
fine-tuned model (see Appendix D).

5 Connection to Classification Rationales

In this section, we discuss related approaches devel-
oped for classification, and why they cannot scale
to sequence models. We also show that the com-
binatorial rationale objective in Eq. 3 is a global
solution to a classification rationale-style objective.



In classification problems, a sequence zi.7 is
associated with a label y. Rationale methods are
commonly used in this setting (Lei et al., 2016;
Chen et al., 2018; Yoon et al., 2018; Bastings et al.,
2019; Jain et al., 2020; Jethani et al., 2021). The
most common approach uses two models: one, a
selection model ¢(S|x1.7), provides a distribution
over possible rationales; the other, the predictive
model p(y|zs), makes predictions given only sam-
ples from the former model. Typically, p and ¢ are
optimized jointly to maximize

Ex,yNFESNq(S\x,y) [logp(y‘xS) - A|SH (7)

Here, F'is the ground truth, unknown data distribu-
tion, and A is a regularizing penalty that encourages
smaller rationales.

In practice, it is infeasible to adopt this objective
for sequence models. Eq. 7 is centered on pro-
viding predictive models with only the words in
its rationale. In sequential settings, each word re-
quires its own rationale. Thus training with shared
word representations would leak information across
rationales. Training sequence models without shar-
ing representations is computationally infeasible;
it requires O(7T®) computations per sequence for
transformer architectures.

Most classification rationale methods treat
q(S|z1.7) as a probability distribution over all pos-
sible rationales. However, the ¢ that maximizes
Eq. 7 is deterministic for any p. To see this, note
that ¢ does not appear inside the expectation in
Eq. 7, so it can place all its mass on a single mode.
We provide a formal justification in Appendix B.

Since the optimal selection model q is a point-
mass, the optimal rationale can be written as

argmin A|S| —logp(y|zs). (8)
SeS

This optimization is identical to the combinatorial
optimization in Eq. 3, albeit with a soft constraint
on the rationale’s prediction: the true label y is
not required to be the maximum of p(y'|zg). In
practice, this soft constraint sometimes results in
empty rationales (Jain et al., 2020). Since we view
sufficiency as a key component of a good rationale,
Eq. 3 imposes a hard constraint on the rationale’s
prediction.

6 Related Work

Finding rationales is similar to feature selection.
While global feature selection has been a well-
studied problem in statistics (Guyon and Elisseeff,

2003; Hastie et al., 2009; Bertsimas et al., 2016),
instance-wise feature selection — where the goal
is selecting features per-example — is a newer re-
search area (Chen et al., 2018). We review local
explanation methods used for NLP.

Gradients. Gradient-based saliency methods
have long been used as a measure of feature impor-
tance in machine learning (Baehrens et al., 2010;
Simonyan et al., 2013; Li et al., 2016a). Some varia-
tions involve word embeddings (Denil et al., 2014);
integrated gradients, to improve sensitivity (Sun-
dararajan et al., 2017); and relevance-propagation
to track each input’s contribution through the net-
work (Bach et al., 2015; Voita et al., 2021).

But there are drawbacks to using gradient-based
methods as explanatory tools. Sundararajan et al.
(2017) show that in practice, gradients are satu-
rated: they may all be close to zero for a well-
fitted function, and thus not reflect importance. Ad-
versarial methods can also distort gradient-based
saliences while keeping a model’s prediction the
same (Ghorbani et al., 2019; Wang et al., 2020). We
compare to gradient saliency methods in Section 8.

Attention. Recently, NLP practitioners have fo-
cused on using attention weights as explanatory
tools. The literature has made a distinction be-
tween faithfulness and plausibility. An explana-
tion is faithful if it accurately depicts how a model
makes a decision (Jacovi and Goldberg, 2020); an
explanation is plausible if it can be understood and
interpreted by humans (Wiegreffe and Pinter, 2019).
Practitioners have shown that attention-based expla-
nations are generally not faithful (Jain and Wallace,
2019; Serrano and Smith, 2019), but that they may
be plausible (Wiegreffe and Pinter, 2019; Mohanku-
mar et al., 2020; Vashishth et al., 2019). Others
show that attention weights should not be inter-
preted as belonging to single tokens since they mix
information across tokens (Brunner et al., 2019;
Kobayashi et al., 2020). Bastings and Filippova
(2020) argue that general input saliency measures,
such as gradients, are better suited for explainabil-
ity than attention. We compare to attention-based
methods in Section 8.

Local post-hoc interpretability. Another class
of methods provides local interpretability for pre-
trained models. These approaches aim to explain
a model’s behavior for a single example or for a
small subset of inputs. LIME (Ribeiro et al., 2016)
trains an interpretable model that locally approx-



imates the pretrained model. Alvarez-Melis and
Jaakkola (2017) learn a causal relationship between
perturbed inputs and their model outputs. These
methods impose no constraints on the pretrained
model. However, they are expensive — they require
training separate models for each input region. In
contrast, the method proposed here, greedy rational-
ization, can efficiently explain many predictions.

Input perturbation. Practitioners have also
measured the importance of inputs by perturbing
them (Zeiler and Fergus, 2014; K4dar et al., 2017).
Occlusion methods (Li et al., 2016b) replace an
input with a baseline (e.g. zeros), while omission
methods (Kadér et al., 2017) remove words entirely.
Li et al. (2016b) propose a reinforcement learning
method that aims to find the minimum number of
occluded words that would change a model’s pre-
diction. Feng et al. (2018) use gradients to remove
unimportant words to see how long it takes for the
model’s prediction to change. They find that the re-
maining words are nonsensical and do not comport
with other saliency methods. Others have shown
that input perturbation performs worse than other
saliency methods in practice (Poerner et al., 2018).
These methods have mostly focused on subtractive
techniques. For this reason, they are inefficient
and do not aim to form sufficient explanations. In
contrast, greedy rationalization efficiently builds
up sufficient explanations.

7 Experimental Setup

There are two goals in our empirical studies. The
first is to compare the ability of greedy rationaliza-
tion to other approaches for optimizing the combi-
natorial objective in Eq. 3. The second is to assess
the quality of produced rationales.

We measure the quality of rationales using two
criteria: faithfulness and plausibility. An explana-
tion is faithful if it accurately depicts how a model
makes a decision (Jacovi and Goldberg, 2020); an
explanation is plausible if it can be understood
and interpreted by humans (Wiegreffe and Pinter,
2019). Although sufficiency is a standard way to
measure faithfulness (DeYoung et al., 2020), all
the rationales that satisfy the constraint of Eq. 3 are
sufficient by definition. To measure plausibility, we
compare rationales to human annotations. Since
there do not exist language modeling datasets with
human rationales, we collected annotations based
on Lambada (Paperno et al., 2016). The data is
available as part of this paper.

We compare greedy rationalization to a variety
of gradient- and attention-based baselines (see Sec-
tion 6). To form baseline sequential rationales,
we add words by the order prescribed by each ap-
proach, stopping when the model prediction is suf-
ficient. The baselines are: [» gradient norms of em-
beddings (Li et al., 2016a), embedding gradients
multiplied by the embeddings (Denil et al., 2014),
integrated gradients (Sundararajan et al., 2017), at-
tention rollout (Abnar and Zuidema, 2020), the
last-layer transformer attention weights averaged-
across heads, and all transformer attentions aver-
aged across all layers and heads (Jain et al., 2020).

To compare rationale sets produced by each
method to those annotated by humans, we use the
set-similarity metrics described in DeYoung et al.
(2020): the intersection-over-union (IOU) of each
rationale and the human rationale, along with the
token-level F1, treating tokens as binary predic-
tions (either in the human rationale or out of it).

We use transformer-based models for all of the
experiments.’ We will release our fine-tuned GPT-
2 model on Hugging Face (Wolf et al., 2019). For
model and fine-tuning details, refer to Appendix D.

8 Results and Discussion

The experiments test sequential rationales for lan-
guage modeling and machine translation. Ap-
pendix E contains full details for each experiment.

8.1 Language Modeling

Long-Range Agreement. The first study tests
whether rationales for language models can capture
long-range agreement. We create a template dataset
using the analogies from Mikolov et al. (2013).
This dataset contains word pairs that contain either
a semantic or syntactic relationship. For each type
of relationship, we use a predefined template. It
prompts a language model to complete the word
pair after it has seen the first word.

For example, one of the fifteen categories is
countries and their capitals. We can prompt a lan-
guage model to generate the capital by first men-
tioning a country and then alluding to its capital.
To test long-range agreement, we also include a
distractor sentence that contains no pertinent in-
formation about the word pair. For example, our

>We fine-tune each model for compatibility using a single
GPU. That we can fine-tune GPT-2 Large (Radford et al.,
2019) to learn compatible conditional distributions on a single
GPU suggests that most practitioners will be able to train
compatible models using a reasonable amount of computation.



Length  Ratio NoD

Grad norms 22.5 4.1 1.0 0.06
Grad x emb 38.0 7.4 099 0.01
Integrated grads 28.1 52 0.99  0.00
Attention rollout 36.9 7.1 1.0 0.12

Ante

Last attention 16.7 29 0.99 0.13

All attentions 14.5 2.6 1.0 0.02

Greedy 7.1 1.2 1.0 0.43
Table 1. Language modeling faithfulness on long-

range agreement with templated analogies. ‘“Ratio”
refers to the approximation ratio of each method’s ratio-
nale length to the exhaustive search minimum. “Ante”
refers to the percent of rationales that contain the true
antecedent. “No D” refers to the percent of rationales
that do not contain any tokens from the distractor.

template for this category is,

When my flight landed in Japan, I converted my
currency and slowly fell asleep. (I had a terrifying
dream about my grandmother, but that’s a story
for another time). I was staying in the capital,

Here, the parenthetical clause is a distractor sen-
tence, since it contains no relevant information
about predicting the capital of Japan. The correct
capital, “Tokyo,” is predicted by GPT-2 both with
and without the distractor. We use this template for
all of the examples in the country capital category,
swapping the antecedent “Japan” for each country
provided in Mikolov et al. (2013).

We feed the prompts to GPT-2, which completes
each analogy. To measure faithfulness, we calcu-
late the percent of rationales that contain the true
antecedent, and the percent of rationales that do not
contain any words in the distractor. We only use ex-
amples where the prediction is the same both with
and without the distractor. We also perform exhaus-
tive rationale search on the objective in Eq. 3. This
search is highly inefficient, so we only complete
it for 40 examples. To measure the approximation
ratio, we divide the size of the rationale found by
each method by the exhaustive rationale size.

Table 1 contains the results on the compatible
model.® Although all methods contain the true an-
tecedents in their rationales, greedy rationalization
has by far the least distractors in its rationales. The
rationales are also universally shorter for greedy
rationalization, and closer to the optimal rationales,
justifying our greedy assumption.

8To show that fine-tuning GPT-2 for compatibility is not
hurting the baselines, we also perform the baseline methods
on a pretrained GPT-2 without fine-tuning; see Appendix E.

Length IOU F1
Gradient norms 52.9 0.13  0.21
Gradient x embedding 64.8 0.11  0.19
Integrated gradients 59.1 0.11  0.19
Attention rollout 73.5 0.09 0.17
Last attention layer 43.2 0.17 0.27
All attention layers 35.8 0.24 0.33
Greedy 14.1 0.27 0.37

Table 2. Language modeling plausibility on rationale-
annotated Lambada.

Annotated Rationales. To test the plausibility
of rationales for language models, we collect a
dataset of human annotations. We base the collec-
tion on Lambada (Paperno et al., 2016). Lambada
is constructed so that humans need to use both lo-
cal and global context to reliably predict a missing
word. By its construction it is guaranteed to have
non-trivial rationales.

Our goal is to collect rationales that are both
minimal and sufficient for humans. We run an an-
notation procedure with two roles: a selector and a
predictor. First, the selector sees the full passage
and ranks the words in order of how informative
they are for predicting the final word. Next, the
predictor sees one word at a time chosen by the
selector, and is asked to predict the final word of
the passage. The words the predictor saw before
guessing the correct word form a human rationale.
This rationale selection method is inspired by Ris-
sanen Data Analysis (Rissanen, 1978; Perez et al.,
2021), which uses a minimum description length
metric to estimate feature importances. We rely on
human annotators to estimate information gains.

Since it could be trivial for humans to predict
the final word if it also appears in the context, we
only include examples that do not repeat a word.
We collect annotations for 107 examples, which
we also release publicly. We compare the ratio-
nales produced by each method to the annotated
rationales. In the analysis, we only include the 62
examples that GPT-2 predicts correctly.

Table 2 shows that the greedy rationales are most
similar to the human-annotated rationales. Greedy
rationalization is also the most effective at mini-
mizing the combinatorial objective in Eq. 3, as its
rationales are by far the shortest. Figure 5 contains
examples of rationales for this dataset.

It is worth noting that the top few words added
by the baselines are quite relevant; after 5 tokens,
the “All attention layers” baseline has a better F1
and IOU than greedy rationalization. However,



Target word: grow

"Just who is going to pay for this special feed grain
anyway? It must cost a bit if it's that special.”

"You're going to pay, obviously," replied Mitch, "since
your cows will be eating it. On the other hand, Joe will be
planting and irrigating the grain. He'll do all the work to
make it

Target word: refuse

It was the kind of smile that I'd seen before. The kind the
boxer gave me right before he killed me in that dirty fight.

“I have a proposition for you" he began, pulling his
hands down from under his chin and pushing out of the
chair. “One that you won’t be able to

Figure 5. Examples from our annotated Lambada
dataset. Highlighted text denotes greedy rationales, and
bolded text denotes human-annotated rationales.

Mean Crossovers Crossover Rate

Source  Target  Source Target
Grad norms 0.41 0.50 0.06 0.07
Grad x emb 6.22 5.63 0.42 0.42
Integrated grads 1.93 1.53 0.22 0.12
Last attention 0.56 2.49 0.08 0.24
All attentions 0.60 0.83 0.08 0.11
Greedy 0.11 0.16 0.08 0.03

Table 3. Translation faithfulness with distractors.
“Mean crossovers” refers to the average number of
crossovers per rationale, and “Crossover rate” refers to
the fraction of rationales that contain at least one.

the baselines struggle to form sufficient rationales,
which hurts their overall performance.

8.2 Machine Translation

Distractors. To measure faithfulness, we take a
transformer trained on IWSLT14 De-En (and fine-
tuned for compatibility), and generate translations
for 1000 source sequences. We then randomly con-
catenate each source sequence with a distractor
(before or after). We know that each target se-
quence is generated from the original source. Thus,
we can evaluate rationales by penalizing them for
“crossing over” to the distractor.

Table 3 contains the results. Greedy rational-
ization has by far the fewest average number of
crossovers per rationale. Although the percent of
source rationales that cross over is slightly higher
than the percent using gradient norms, the percent-
age on the target side is superior.

Annotated Alignments. To test plausibility, we
compare the rationales to human-labeled word

Length AER| IOU F1  Topl
Grad norms 10.3 0.82 031 0.16 0.62
Grad x emb 13.0 0.89 0.16 0.12 040
Integrated grads 11.0 0.84 027 0.14 045
Last attention 10.7 0.83 0.28 0.15 0.59
All attentions 10.6 0.82 0.32 0.15 0.65
Greedy 5.0 0.77 041 023 0.64

Table 4. Translation plausibility with annotated align-
ments. The first four columns correspond to using the
full rationale found by each method; the last column
“Top1” refers to the accuracy of the first token added
by each method. AER refers to alignment error rate.

alignments. Using a dataset containing 500 anno-
tated alignments for German-English translation,’
we compute rationales for each method using the
ground truth targets. We measure similarity to the
labeled rationales by computing alignment error
rate (AER) (Och and Ney, 2000), along with com-
puting the IOU and F1 between sets. To separate
the requirement that the rationale be sufficient from
each method’s global ordering of tokens, we also
compare top-1 accuracies, which measure whether
the top token identified by each baseline is present
in the labeled alignment set.

Table 4 contains the results. The rationales
learned by greedy rationalization are more similar
to human-labeled alignments than those provided
by gradient and attention methods. Many methods
have similar top-1 accuracies — indeed, the best
top-1 accuracy comes from averaging all attention
layers. This reinforces the notion that although the
baselines may be able to capture first-order infor-
mation, they struggle to form sufficient rationales.

9 Conclusion

We proposed an optimization-based algorithm for
rationalizing sequence predictions. Although ex-
act optimization is intractable, we developed a
greedy approach that efficiently finds good ratio-
nales. Moreover, we showed that models can be
fine-tuned to form compatible distributions, thereby
circumventing an intractable marginalization step.
In experiments, we showed that the greedy algo-
rithm is effective at optimization, and that its ratio-
nales are more faithful and plausible than those of
gradient- and attention-based methods. We hope
that our research, along with the release of an an-
notated dataset of sequence rationales, catalyzes
further research into this area.

"https://www-i6.informatik.rwth-
aachen.de/goldAlignment/
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